Measuring the diffusion of innovations with paragraph vector topic models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paragraph vector based topic model for language model adaptation

Topic model is an important approach for language model (LM) adaptation and has attracted research interest for a long time. Latent Dirichlet Allocation (LDA), which assumes generative Dirichlet distribution with bag-of-word features for hidden topics, has been widely used as the state-of-the-art topic model. Inspired by recent development of a new paradigm of distributed paragraph representati...

متن کامل

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

Generative Paragraph Vector

The recently introduced Paragraph Vector is an efficient method for learning highquality distributed representations for pieces of texts. However, an inherent limitation of Paragraph Vector is lack of ability to infer distributed representations for texts outside of the training set. To tackle this problem, we introduce a Generative Paragraph Vector, which can be viewed as a probabilistic exten...

متن کامل

Cellular Automata Models for Diffusion of Innovations

We propose a probabilistic cellular automata model for the spread of innovations, rumors, news, etc. in a social system. The local rule used in the model is outertotalistic, and the range of interaction can vary. When the range R of the rule increases, the takeover time for innovation increases and converges toward its mean-field value, which is almost inversely proportional to R when R is larg...

متن کامل

Measuring Confidence in Temporal Topic Models with Posterior Predictive Checks

Large text collections are useful in social science research, but building reliable predictive models is difficult. Researchers must either deal directly with sparse, noisy, high dimensional language data or use latent variable models to infer more tractable lower dimensional patterns. For conclusions based on latent variable models to be reliable, however, it is necessary to measure the degree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2020

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0226685